EconPapers    
Economics at your fingertips  
 

The Super-Diffusive Singular Perturbation Problem

Edgardo Alvarez and Carlos Lizama
Additional contact information
Edgardo Alvarez: Departamento de Matemáticas y Estadística, Universidad del Norte, Barranquilla, Colombia
Carlos Lizama: Departamento de Matemática y Ciencia de la Computación, Facultad de Ciencia, Universidad de Santiago de Chile, Casilla 307, Correo 2, Santiago, Chile

Mathematics, 2020, vol. 8, issue 3, 1-14

Abstract: In this paper we study a class of singularly perturbed defined abstract Cauchy problems. We investigate the singular perturbation problem ( P ? ) ? ? D t ? u ? ( t ) + u ? ? ( t ) = A u ? ( t ) , t ? [ 0 , T ] , 1 < ? < 2 , ? > 0 , for the parabolic equation ( P ) u 0 ? ( t ) = A u 0 ( t ) , t ? [ 0 , T ] , in a Banach space, as the singular parameter goes to zero. Under the assumption that A is the generator of a bounded analytic semigroup and under some regularity conditions we show that problem ( P ? ) has a unique solution u ? ( t ) for each small ? > 0 . Moreover u ? ( t ) converges to u 0 ( t ) as ? ? 0 + , the unique solution of equation ( P ) .

Keywords: singular perturbation; fractional partial differential equations; analytic semigroup; super-diffusive processes (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/8/3/403/pdf (application/pdf)
https://www.mdpi.com/2227-7390/8/3/403/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:8:y:2020:i:3:p:403-:d:331407

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:8:y:2020:i:3:p:403-:d:331407