EconPapers    
Economics at your fingertips  
 

Infinitely Many Homoclinic Solutions for Fourth Order p-Laplacian Differential Equations

Stepan Tersian
Additional contact information
Stepan Tersian: Institute of Mathematics and Informatics, Bulgarian Academy of Sciences (BAS), 1113 Sofia, Bulgaria

Mathematics, 2020, vol. 8, issue 4, 1-10

Abstract: The existence of infinitely many homoclinic solutions for the fourth-order differential equation φ p u ″ t ″ + w φ p u ′ t ′ + V ( t ) φ p u t = a ( t ) f ( t , u ( t ) ) , t ∈ R is studied in the paper. Here φ p ( t ) = t p − 2 t , p ≥ 2 , w is a constant, V and a are positive functions, f satisfies some extended growth conditions. Homoclinic solutions u are such that u ( t ) → 0 , | t | → ∞ , u ≠ 0 , known in physical models as ground states or pulses. The variational approach is applied based on multiple critical point theorem due to Liu and Wang.

Keywords: homoclinic solutions; fourth-order p-Laplacian differential equations; minimization theorem; Clark’s theorem (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/8/4/505/pdf (application/pdf)
https://www.mdpi.com/2227-7390/8/4/505/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:8:y:2020:i:4:p:505-:d:340501

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:8:y:2020:i:4:p:505-:d:340501