EconPapers    
Economics at your fingertips  
 

A db-Scan Hybrid Algorithm: An Application to the Multidimensional Knapsack Problem

José García, Paola Moraga, Matias Valenzuela and Hernan Pinto
Additional contact information
José García: Escuela de Ingeniería en Construcción, Pontificia Universidad Católica de Valparaíso, 2362807 Valparaíso, Chile
Paola Moraga: Escuela de Ingeniería en Construcción, Pontificia Universidad Católica de Valparaíso, 2362807 Valparaíso, Chile
Matias Valenzuela: Escuela de Ingeniería en Construcción, Pontificia Universidad Católica de Valparaíso, 2362807 Valparaíso, Chile
Hernan Pinto: Escuela de Ingeniería en Construcción, Pontificia Universidad Católica de Valparaíso, 2362807 Valparaíso, Chile

Mathematics, 2020, vol. 8, issue 4, 1-22

Abstract: This article proposes a hybrid algorithm that makes use of the db-scan unsupervised learning technique to obtain binary versions of continuous swarm intelligence algorithms. These binary versions are then applied to large instances of the well-known multidimensional knapsack problem. The contribution of the db-scan operator to the binarization process is systematically studied. For this, two random operators are built that serve as a baseline for comparison. Once the contribution is established, the db-scan operator is compared with two other binarization methods that have satisfactorily solved the multidimensional knapsack problem. The first method uses the unsupervised learning technique k-means as a binarization method. The second makes use of transfer functions as a mechanism to generate binary versions. The results show that the hybrid algorithm using db-scan produces more consistent results compared to transfer function (TF) and random operators.

Keywords: combinatorial optimization; machine learning; metaheuristics; db-scan; knapsack (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/8/4/507/pdf (application/pdf)
https://www.mdpi.com/2227-7390/8/4/507/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:8:y:2020:i:4:p:507-:d:340642

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:8:y:2020:i:4:p:507-:d:340642