EconPapers    
Economics at your fingertips  
 

Percentile Study of ? Distribution. Application to Response Time Data

Juan Carlos Castro-Palacio, Pedro Fernández- de-Córdoba, J. M. Isidro, Esperanza Navarro-Pardo and Romeo Selvas Aguilar
Additional contact information
Juan Carlos Castro-Palacio: Grupo de Modelización Interdisciplinar, InterTech, Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València, E-46022 Valencia, Spain
Pedro Fernández- de-Córdoba: Grupo de Modelización Interdisciplinar, InterTech, Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València, E-46022 Valencia, Spain
J. M. Isidro: Grupo de Modelización Interdisciplinar, InterTech, Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València, E-46022 Valencia, Spain
Esperanza Navarro-Pardo: Grupo de Modelización Interdisciplinar, InterTech, Departamento de Psicología Evolutiva y de la Educación, Universitat de València, E-46010 Valencia, Spain
Romeo Selvas Aguilar: Facultad de Ciencias Físico-Matemáticas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Nuevo León, Mexico

Mathematics, 2020, vol. 8, issue 4, 1-7

Abstract: As a continuation of our previous work, where a Maxwell–Boltzmann distribution was found to model a collective’s reaction times, in this work we will carry out a percentile study of the χ distribution for some freedom ranging from k = 2 to k = 10. The most commonly used percentiles in the biomedical and behavioral sciences have been included in the analysis. We seek to provide a look-up table with percentile ratios, taken symmetrically about the median, such that this distribution can be identified in practice in an easy way. We have proven that these ratios do not depend upon the variance chosen for the k generating Gaussians. In general, the χ probability density, generalized to take any value of the variance, represents an ideal gas in a k -dimensional space. We also derive an approximate expression for the median of the generalized χ distribution. In the second part of the results, we will focus on the practical case of k = 3, which represents the ideal gas in physics, and models quite well the reaction times of a human collective. Accurately, we will perform a more detailed scrutiny of the percentiles for the reaction time distribution of a sample of 50 school-aged children (7200 reaction times).

Keywords: ? distribution; ideal gas model; Maxwell–Boltzmann distribution; response times (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/8/4/514/pdf (application/pdf)
https://www.mdpi.com/2227-7390/8/4/514/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:8:y:2020:i:4:p:514-:d:340719

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:8:y:2020:i:4:p:514-:d:340719