Dynamics of General Class of Difference Equations and Population Model with Two Age Classes
Osama Moaaz,
George E. Chatzarakis,
Dimplekumar Chalishajar and
Omar Bazighifan
Additional contact information
Osama Moaaz: Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
George E. Chatzarakis: Department of Electrical and Electronic Engineering Educators, School of Pedagogical and Technological Education (ASPETE), Marousi 15122, Athens, Greece
Dimplekumar Chalishajar: Department of Applied Mathematics, Virginia Military Institute (VMI) 435 Mallory Hall, Lexington, VA 24450, USA
Omar Bazighifan: Department of Mathematics, Faculty of Science, Hadhramout University, Hadhramout 50512, Yemen
Mathematics, 2020, vol. 8, issue 4, 1-13
Abstract:
In this paper, we study the qualitative behavior of solutions for a general class of difference equations. The criteria of local and global stability, boundedness and periodicity character (with period 2 k ) of the solution are established. Moreover, by applying our general results on a population model with two age classes, we establish the qualitative behavior of solutions of this model. To support our results, we introduce some numerical examples.
Keywords: difference equations; equilibrium points; local and global stability; boundedness; periodic solution; population model (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2227-7390/8/4/516/pdf (application/pdf)
https://www.mdpi.com/2227-7390/8/4/516/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:8:y:2020:i:4:p:516-:d:340828
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().