A Closed-Form Solution of Prestressed Annular Membrane Internally-Connected with Rigid Circular Plate and Transversely-Loaded by Central Shaft
Zhi-Xin Yang,
Jun-Yi Sun,
Zhi-Hang Zhao,
Shou-Zhen Li and
Xiao-Ting He
Additional contact information
Zhi-Xin Yang: School of Civil Engineering, Chongqing University, Chongqing 400045, China
Jun-Yi Sun: School of Civil Engineering, Chongqing University, Chongqing 400045, China
Zhi-Hang Zhao: School of Civil Engineering, Chongqing University, Chongqing 400045, China
Shou-Zhen Li: School of Civil Engineering, Chongqing University, Chongqing 400045, China
Xiao-Ting He: School of Civil Engineering, Chongqing University, Chongqing 400045, China
Mathematics, 2020, vol. 8, issue 4, 1-18
Abstract:
In this paper, we analytically dealt with the usually so-called prestressed annular membrane problem, that is, the problem of axisymmetric deformation of the annular membrane with an initial in-plane tensile stress, in which the prestressed annular membrane is peripherally fixed, internally connected with a rigid circular plate, and loaded by a shaft at the center of this rigid circular plate. The prestress effect, that is, the influence of the initial stress in the undeformed membrane on the axisymmetric deformation of the membrane, was taken into account in this study by establishing the boundary condition with initial stress, while in the existing work by establishing the physical equation with initial stress. By creating an integral expression of elementary function, the governing equation of a second-order differential equation was reduced to a first-order differential equation with an undetermined integral constant. According to the three preconditions that the undetermined integral constant is less than, equal to, or greater than zero, the resulting first-order differential equation was further divided into three cases to solve, such that each case can be solved by creating a new integral expression of elementary function. Finally, a characteristic equation for determining the three preconditions was deduced in order to make the three preconditions correspond to the situation in practice. The solution presented here could be called the extended annular membrane solution since it can be regressed into the classic annular membrane solution when the initial stress is equal to zero.
Keywords: annular membrane; prestress; initial stress; differential equation; closed-form solution (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/2227-7390/8/4/521/pdf (application/pdf)
https://www.mdpi.com/2227-7390/8/4/521/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:8:y:2020:i:4:p:521-:d:340898
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().