Turbulence as a Network of Fourier Modes
Özgür. D. Gürcan,
Yang Li and
Pierre Morel
Additional contact information
Özgür. D. Gürcan: Laboratoire de Physique des Plasmas, CNRS, Ecole Polytechnique, Sorbonne Université, Université Paris-Saclay, Observatoire de Paris, F-91120 Palaiseau, France
Yang Li: Laboratoire de Physique des Plasmas, CNRS, Ecole Polytechnique, Sorbonne Université, Université Paris-Saclay, Observatoire de Paris, F-91120 Palaiseau, France
Pierre Morel: Laboratoire de Physique des Plasmas, CNRS, Ecole Polytechnique, Sorbonne Université, Université Paris-Saclay, Observatoire de Paris, F-91120 Palaiseau, France
Mathematics, 2020, vol. 8, issue 4, 1-13
Abstract:
Turbulence is the duality of chaotic dynamics and hierarchical organization of a field over a large range of scales due to advective nonlinearities. Quadratic nonlinearities (e.g., advection) in real space, translates into triadic interactions in Fourier space. Those interactions can be computed using fast Fourier transforms, or other methods of computing convolution integrals. However, more generally, they can be interpreted as a network of interacting nodes, where each interaction is between a node and a pair. In this formulation, each node interacts with a list of pairs that satisfy the triadic interaction condition with that node, and the convolution becomes a sum over this list. A regular wavenumber space mesh can be written in the form of such a network. Reducing the resolution of a regular mesh and combining the nearby nodes in order to obtain the reduced network corresponding to the low resolution mesh, we can deduce the reduction rules for such a network. This perspective allows us to develop network models as approximations of various types of turbulent dynamics. Various examples, such as shell models, nested polyhedra models, or predator–prey models, are briefly discussed. A prescription for setting up a small world variants of these models are given.
Keywords: turbulence; navier-stokes; networks (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2227-7390/8/4/530/pdf (application/pdf)
https://www.mdpi.com/2227-7390/8/4/530/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:8:y:2020:i:4:p:530-:d:341276
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().