Vibration Signal Processing-Based Detection of Short-Circuited Turns in Transformers: A Nonlinear Mode Decomposition Approach
Jose R. Huerta-Rosales,
David Granados-Lieberman,
Juan P. Amezquita-Sanchez,
David Camarena-Martinez and
Martin Valtierra-Rodriguez
Additional contact information
Jose R. Huerta-Rosales: ENAP-Research Group, CA-Sistemas Dinámicos, Facultad de Ingeniería, Universidad Autónoma de Querétaro (UAQ), Campus San Juan del Río, Río Moctezuma 249, Col. San Cayetano, San Juan del Río C. P. 76807, Mexico
David Granados-Lieberman: ENAP-Research Group, CA-Fuentes Alternas y Calidad de la Energía Eléctrica, Departamento de Ingeniería Electromecánica, Tecnológico Nacional de México, Instituto Tecnológico Superior de Irapuato (ITESI), Carr. Irapuato-Silao km 12.5, Colonia El Copal, Irapuato, Guanajuato C. P. 36821, Mexico
Juan P. Amezquita-Sanchez: ENAP-Research Group, CA-Sistemas Dinámicos, Facultad de Ingeniería, Universidad Autónoma de Querétaro (UAQ), Campus San Juan del Río, Río Moctezuma 249, Col. San Cayetano, San Juan del Río C. P. 76807, Mexico
David Camarena-Martinez: ENAP-Research Group, CA Procesamiento Digital de Señales, Departamento de Electrónica, División de Ingenierías Campus Irapuato-Salamanca (DICIS), Salamanca, Guanajuato C. P. 36885, Mexico
Martin Valtierra-Rodriguez: ENAP-Research Group, CA-Sistemas Dinámicos, Facultad de Ingeniería, Universidad Autónoma de Querétaro (UAQ), Campus San Juan del Río, Río Moctezuma 249, Col. San Cayetano, San Juan del Río C. P. 76807, Mexico
Mathematics, 2020, vol. 8, issue 4, 1-17
Abstract:
Transformers are vital and indispensable elements in electrical systems, and therefore, their correct operation is fundamental; despite being robust electrical machines, they are susceptible to present different types of faults during their service life. Although there are different faults, the fault of short-circuited turns (SCTs) has attracted the interest of many researchers around the world since the windings in a transformer are one of the most vulnerable parts. In this regard, several works in literature have analyzed the vibration signals that generate a transformer as a source of information to carry out fault diagnosis; however this analysis is not an easy task since the information associated with the fault is embedded in high level noise. This problem becomes more difficult when low levels of fault severity are considered. In this work, as the main contribution, the nonlinear mode decomposition (NMD) method is investigated as a potential signal processing technique to extract features from vibration signals, and thus, detect SCTs in transformers, even in early stages, i.e., low levels of fault severity. Also, the instantaneous root mean square (RMS) value computed using the Hilbert transform is proposed as a fault indicator, demonstrating to be sensitive to fault severity. Finally, a fuzzy logic system is developed for automatic fault diagnosis. To test the proposal, a modified transformer representing diverse levels of SCTs is used. These levels consist of 0 (healthy condition), 5, 10, 15, 20, and 25 SCTs. Results demonstrate the capability of the proposal to extract features from vibration signals and perform automatic fault diagnosis.
Keywords: fault diagnosis; fuzzy logic; nonlinear mode decomposition; short-circuit fault; transformers; vibration signals (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/2227-7390/8/4/575/pdf (application/pdf)
https://www.mdpi.com/2227-7390/8/4/575/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:8:y:2020:i:4:p:575-:d:344870
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().