EconPapers    
Economics at your fingertips  
 

State Vector Identification of Hybrid Model of a Gas Turbine by Real-Time Kalman Filter

Gustavo Delgado-Reyes, Pedro Guevara-Lopez, Igor Loboda, Leobardo Hernandez-Gonzalez, Jazmin Ramirez-Hernandez, Jorge-Salvador Valdez-Martinez and Asdrubal Lopez-Chau
Additional contact information
Gustavo Delgado-Reyes: Escuela Superior de Ingeniería Mecánica y Eléctrica, Unidad Culhuacan, Instituto Politécnico Nacional, Av. Santa Ana No. 1000, Col. San Francisco Culhuacan, Mexico City C.P. 04430, Mexico
Pedro Guevara-Lopez: Escuela Superior de Ingeniería Mecánica y Eléctrica, Unidad Culhuacan, Instituto Politécnico Nacional, Av. Santa Ana No. 1000, Col. San Francisco Culhuacan, Mexico City C.P. 04430, Mexico
Igor Loboda: Escuela Superior de Ingeniería Mecánica y Eléctrica, Unidad Culhuacan, Instituto Politécnico Nacional, Av. Santa Ana No. 1000, Col. San Francisco Culhuacan, Mexico City C.P. 04430, Mexico
Leobardo Hernandez-Gonzalez: Escuela Superior de Ingeniería Mecánica y Eléctrica, Unidad Culhuacan, Instituto Politécnico Nacional, Av. Santa Ana No. 1000, Col. San Francisco Culhuacan, Mexico City C.P. 04430, Mexico
Jazmin Ramirez-Hernandez: Escuela Superior de Ingeniería Mecánica y Eléctrica, Unidad Culhuacan, Instituto Politécnico Nacional, Av. Santa Ana No. 1000, Col. San Francisco Culhuacan, Mexico City C.P. 04430, Mexico
Jorge-Salvador Valdez-Martinez: Universidad Tecnológica Emiliano Zapata del Estado de Morelos, Universidad Tecnológica No. 1, Morelos 62760, Mexico
Asdrubal Lopez-Chau: Universidad Autónoma del Estado de México, CU UAEM Zumpango Kilómetro 3.5 Camino Viejo a Jilotzingo, Estado de Mexico 55600, Mexico

Mathematics, 2020, vol. 8, issue 5, 1-15

Abstract: A model and real-time simulation of a gas turbine engine (GTE) by real-time tasks (RTT) is presented. A Kalman filter is applied to perform the state vector identification of the GTE model. The obtained algorithms are recursive and multivariable; for this reason, ANSI C libraries have been developed for (a) use of matrices and vectors, (b) dynamic memory management, (c) simulation of state-space systems, (d) approximation of systems using equations in matrix finite difference, (e) computing the mean square errors vector, and (f) state vector identification of dynamic systems through digital Kalman filter. Simulations were performed in a Single Board Computer (SBC) Raspberry Pi 2 ® with a real-time operating system. Execution times have been measured to justify the real-time simulation. To validate the results, multiple time plots are analyzed to verify the quality and convergence time of the mean square error obtained.

Keywords: gas turbine model; Kalman filter; real-time; identification; single board computer; time constraints (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/2227-7390/8/5/659/pdf (application/pdf)
https://www.mdpi.com/2227-7390/8/5/659/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:8:y:2020:i:5:p:659-:d:350882

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:8:y:2020:i:5:p:659-:d:350882