EconPapers    
Economics at your fingertips  
 

On Properties of the Bimodal Skew-Normal Distribution and an Application

David Elal-Olivero, Juan F. Olivares-Pacheco, Osvaldo Venegas, Heleno Bolfarine and Héctor W. Gómez
Additional contact information
David Elal-Olivero: Departamento de Matemáticas, Facultad de Ingeniería, Universidad de Atacama, Copiapó 1530000, Chile
Juan F. Olivares-Pacheco: Departamento de Matemáticas, Facultad de Ingeniería, Universidad de Atacama, Copiapó 1530000, Chile
Osvaldo Venegas: Departamento de Ciencias Matemáticas y Físicas, Facultad de Ingeniería, Universidad Católica de Temuco, Temuco 4780000, Chile
Heleno Bolfarine: Instituto de Matemática e Estatística (IME), Universidade de São Paulo, São Paulo 05508-090, Brazil
Héctor W. Gómez: Departamento de Matemática, Facultad de Ciencias Básicas, Universidad de Antofagasta, Antofagasta 1240000, Chile

Mathematics, 2020, vol. 8, issue 5, 1-16

Abstract: The main object of this paper is to develop an alternative construction for the bimodal skew-normal distribution. The construction is based upon a study of the mixture of skew-normal distributions. We study some basic properties of this family, its stochastic representations and expressions for its moments. Parameters are estimated using the maximum likelihood estimation method. A simulation study is carried out to observe the performance of the maximum likelihood estimators. Finally, we compare the efficiency of the new distribution with other distributions in the literature using a real data set. The study shows that the proposed approach presents satisfactory results.

Keywords: bimodal; simulation; skew-normal distribution; stochastic representation (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/8/5/703/pdf (application/pdf)
https://www.mdpi.com/2227-7390/8/5/703/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:8:y:2020:i:5:p:703-:d:353320

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:8:y:2020:i:5:p:703-:d:353320