EconPapers    
Economics at your fingertips  
 

Abstract Formulation of the Miura Transform

Yoritaka Iwata
Additional contact information
Yoritaka Iwata: Faculty of Chemistry, Materials and Bioengineering, Kansai University, Osaka 564-8680, Japan

Mathematics, 2020, vol. 8, issue 5, 1-7

Abstract: Miura transform is known as the transformation between Korweg de-Vries equation and modified Korweg de-Vries equation. Its formal similarity to the Cole-Hopf transform has been noticed. This fact sheds light on the logarithmic type transformations as an origin of a certain kind of nonlinearity in the soliton equations. In this article, based on the logarithmic representation of operators in infinite-dimensional Banach spaces, a structure common to both Miura and Cole-Hopf transforms is discussed. In conclusion, the Miura transform is generalized as the transform in abstract Banach spaces, and it is applied to the higher order abstract evolution equations.

Keywords: Miura transform; soliton equations; logarithm (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/8/5/747/pdf (application/pdf)
https://www.mdpi.com/2227-7390/8/5/747/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:8:y:2020:i:5:p:747-:d:355596

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:8:y:2020:i:5:p:747-:d:355596