EconPapers    
Economics at your fingertips  
 

Analysis of a SEIR-KS Mathematical Model For Computer Virus Propagation in a Periodic Environment

Aníbal Coronel, Fernando Huancas, Ian Hess, Esperanza Lozada and Francisco Novoa-Muñoz
Additional contact information
Aníbal Coronel: Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad del Bío-Bío, Campus Fernando May, 3780000 Chillán, Chile
Fernando Huancas: Departamento de Matemática, Facultad de Ciencias Naturales, Matemática y del Medio Ambiente, Universidad Tecnológica Metropolitana, Las Palmeras 3360, 8330378 Ñuñoa-Santiago, Chile
Ian Hess: Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad del Bío-Bío, Campus Fernando May, 3780000 Chillán, Chile
Esperanza Lozada: Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad del Bío-Bío, Campus Fernando May, 3780000 Chillán, Chile
Francisco Novoa-Muñoz: Departamento de Estadística, Facultad de Ciencias, Universidad del Bío-Bío, 4051381 Concepción, Chile

Mathematics, 2020, vol. 8, issue 5, 1-20

Abstract: In this work we develop a study of positive periodic solutions for a mathematical model of the dynamics of computer virus propagation. We propose a generalized compartment model of SEIR-KS type, since we consider that the population is partitioned in five classes: susceptible ( S ); exposed ( E ); infected ( I ); recovered ( R ); and kill signals ( K ), and assume that the rates of virus propagation are time dependent functions. Then, we introduce a sufficient condition for the existence of positive periodic solutions of the generalized SEIR-KS model. The proof of the main results are based on a priori estimates of the SEIR-KS system solutions and the application of coincidence degree theory. Moreover, we present an example of a generalized system satisfying the sufficient condition.

Keywords: periodic solutions; positive solutions; SEIR-KS model; computer virus model (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/8/5/761/pdf (application/pdf)
https://www.mdpi.com/2227-7390/8/5/761/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:8:y:2020:i:5:p:761-:d:356438

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:8:y:2020:i:5:p:761-:d:356438