EconPapers    
Economics at your fingertips  
 

Shape-Preserving Properties of a Relaxed Four-Point Interpolating Subdivision Scheme

Pakeeza Ashraf, Abdul Ghaffar, Dumitru Baleanu, Irem Sehar, Kottakkaran Sooppy Nisar and Faheem Khan
Additional contact information
Pakeeza Ashraf: Department of Mathematics, Government Sadiq College Women University, Bahawalpur 63100, Pakistan
Abdul Ghaffar: Informetrics Research Group, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
Dumitru Baleanu: Department of Mathematics, Cankaya University, Ankara 06530, Turkey
Irem Sehar: Department of Mathematics, Government Sadiq College Women University, Bahawalpur 63100, Pakistan
Kottakkaran Sooppy Nisar: Department of Mathematics, College of Arts and Sciences, Prince Sattam bin Abdulaziz University, Wadi Aldawaser 11991, Saudi Arabia
Faheem Khan: Department of Mathematics, University of Sargodha, Sargodha 40100, Pakistan

Mathematics, 2020, vol. 8, issue 5, 1-14

Abstract: In this paper, we analyze shape-preserving behavior of a relaxed four-point binary interpolating subdivision scheme. These shape-preserving properties include positivity-preserving, monotonicity-preserving and convexity-preserving. We establish the conditions on the initial control points that allow the generation of shape-preserving limit curves by the four-point scheme. Some numerical examples are given to illustrate the graphical representation of shape-preserving properties of the relaxed scheme.

Keywords: interpolating; subdivision scheme; shape preservation; limit curve (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/8/5/806/pdf (application/pdf)
https://www.mdpi.com/2227-7390/8/5/806/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:8:y:2020:i:5:p:806-:d:358511

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:8:y:2020:i:5:p:806-:d:358511