L p -Solution to the Random Linear Delay Differential Equation with a Stochastic Forcing Term
Juan Carlos Cortés and
Marc Jornet
Additional contact information
Juan Carlos Cortés: Instituto Universitario de Matemática Multidisciplinar, Building 8G, access C, 2nd floor, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
Marc Jornet: Instituto Universitario de Matemática Multidisciplinar, Building 8G, access C, 2nd floor, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
Mathematics, 2020, vol. 8, issue 6, 1-16
Abstract:
This paper aims at extending a previous contribution dealing with the random autonomous-homogeneous linear differential equation with discrete delay τ > 0 , by adding a random forcing term f ( t ) that varies with time: x ′ ( t ) = a x ( t ) + b x ( t − τ ) + f ( t ) , t ≥ 0 , with initial condition x ( t ) = g ( t ) , − τ ≤ t ≤ 0 . The coefficients a and b are assumed to be random variables, while the forcing term f ( t ) and the initial condition g ( t ) are stochastic processes on their respective time domains. The equation is regarded in the Lebesgue space L p of random variables with finite p -th moment. The deterministic solution constructed with the method of steps and the method of variation of constants, which involves the delayed exponential function, is proved to be an L p -solution, under certain assumptions on the random data. This proof requires the extension of the deterministic Leibniz’s integral rule for differentiation to the random scenario. Finally, we also prove that, when the delay τ tends to 0, the random delay equation tends in L p to a random equation with no delay. Numerical experiments illustrate how our methodology permits determining the main statistics of the solution process, thereby allowing for uncertainty quantification.
Keywords: random linear delay differential equation; stochastic forcing term; random L p -calculus; uncertainty quantification (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.mdpi.com/2227-7390/8/6/1013/pdf (application/pdf)
https://www.mdpi.com/2227-7390/8/6/1013/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:8:y:2020:i:6:p:1013-:d:374113
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().