EconPapers    
Economics at your fingertips  
 

The Square-Zero Basis of Matrix Lie Algebras

Raúl Durán Díaz, Víctor Gayoso Martínez, Luis Hernández Encinas and Jaime Muñoz Masqué
Additional contact information
Raúl Durán Díaz: Departamento de Automática, Universidad de Alcalá, E-28871 Alcalá de Henares, Spain
Víctor Gayoso Martínez: Instituto de Tecnologías Físicas y de la Información (ITEFI) Consejo Superior de Investigaciones Científicas (CSIC), E-28006 Madrid, Spain
Luis Hernández Encinas: Instituto de Tecnologías Físicas y de la Información (ITEFI) Consejo Superior de Investigaciones Científicas (CSIC), E-28006 Madrid, Spain
Jaime Muñoz Masqué: Instituto de Tecnologías Físicas y de la Información (ITEFI) Consejo Superior de Investigaciones Científicas (CSIC), E-28006 Madrid, Spain

Mathematics, 2020, vol. 8, issue 6, 1-9

Abstract: A method is presented that allows one to compute the maximum number of functionally-independent invariant functions under the action of a linear algebraic group as long as its Lie algebra admits a basis of square-zero matrices even on a field of positive characteristic. The class of such Lie algebras is studied in the framework of the classical Lie algebras of arbitrary characteristic. Some examples and applications are also given.

Keywords: invariant function; Lie algebra of matrices; linear algebraic groups; linear representation; square-zero matrix (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/8/6/1032/pdf (application/pdf)
https://www.mdpi.com/2227-7390/8/6/1032/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:8:y:2020:i:6:p:1032-:d:375662

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:8:y:2020:i:6:p:1032-:d:375662