A Characterization of Strong Completeness in Fuzzy Metric Spaces
Valentín Gregori,
Juan-José Miñana,
Bernardino Roig and
Almanzor Sapena
Additional contact information
Valentín Gregori: Instituto de Investigación para la Gestión Integrada de Zonas Costeras, Universitat Politècnica de València, C/ Paranimf, 1, 46730 Grao de Gandia, Spain
Juan-José Miñana: Departament de Ciències Matemàtiques i Informàtica, Universitat de les Illes Balears, Carretera de Valldemossa km. 7.5, 07122 Palma, Spain
Bernardino Roig: Instituto de Investigación para la Gestión Integrada de Zonas Costeras, Universitat Politècnica de València, C/ Paranimf, 1, 46730 Grao de Gandia, Spain
Almanzor Sapena: Instituto de Investigación para la Gestión Integrada de Zonas Costeras, Universitat Politècnica de València, C/ Paranimf, 1, 46730 Grao de Gandia, Spain
Mathematics, 2020, vol. 8, issue 6, 1-11
Abstract:
Here, we deal with the concept of fuzzy metric space ( X , M , ∗ ) , due to George and Veeramani. Based on the fuzzy diameter for a subset of X , we introduce the notion of strong fuzzy diameter zero for a family of subsets. Then, we characterize nested sequences of subsets having strong fuzzy diameter zero using their fuzzy diameter. Examples of sequences of subsets which do or do not have strong fuzzy diameter zero are provided. Our main result is the following characterization: a fuzzy metric space is strongly complete if and only if every nested sequence of close subsets which has strong fuzzy diameter zero has a singleton intersection. Moreover, the standard fuzzy metric is studied as a particular case. Finally, this work points out a route of research in fuzzy fixed point theory.
Keywords: fuzzy metric; Cauchy sequence; (strong) convergence; completeness; fuzzy diameter (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2227-7390/8/6/861/pdf (application/pdf)
https://www.mdpi.com/2227-7390/8/6/861/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:8:y:2020:i:6:p:861-:d:363033
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().