EconPapers    
Economics at your fingertips  
 

A Characterization of Strong Completeness in Fuzzy Metric Spaces

Valentín Gregori, Juan-José Miñana, Bernardino Roig and Almanzor Sapena
Additional contact information
Valentín Gregori: Instituto de Investigación para la Gestión Integrada de Zonas Costeras, Universitat Politècnica de València, C/ Paranimf, 1, 46730 Grao de Gandia, Spain
Juan-José Miñana: Departament de Ciències Matemàtiques i Informàtica, Universitat de les Illes Balears, Carretera de Valldemossa km. 7.5, 07122 Palma, Spain
Bernardino Roig: Instituto de Investigación para la Gestión Integrada de Zonas Costeras, Universitat Politècnica de València, C/ Paranimf, 1, 46730 Grao de Gandia, Spain
Almanzor Sapena: Instituto de Investigación para la Gestión Integrada de Zonas Costeras, Universitat Politècnica de València, C/ Paranimf, 1, 46730 Grao de Gandia, Spain

Mathematics, 2020, vol. 8, issue 6, 1-11

Abstract: Here, we deal with the concept of fuzzy metric space ( X , M , ∗ ) , due to George and Veeramani. Based on the fuzzy diameter for a subset of X , we introduce the notion of strong fuzzy diameter zero for a family of subsets. Then, we characterize nested sequences of subsets having strong fuzzy diameter zero using their fuzzy diameter. Examples of sequences of subsets which do or do not have strong fuzzy diameter zero are provided. Our main result is the following characterization: a fuzzy metric space is strongly complete if and only if every nested sequence of close subsets which has strong fuzzy diameter zero has a singleton intersection. Moreover, the standard fuzzy metric is studied as a particular case. Finally, this work points out a route of research in fuzzy fixed point theory.

Keywords: fuzzy metric; Cauchy sequence; (strong) convergence; completeness; fuzzy diameter (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/8/6/861/pdf (application/pdf)
https://www.mdpi.com/2227-7390/8/6/861/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:8:y:2020:i:6:p:861-:d:363033

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:8:y:2020:i:6:p:861-:d:363033