EconPapers    
Economics at your fingertips  
 

On the Growth of Some Functions Related to z ( n )

Pavel Trojovský
Additional contact information
Pavel Trojovský: Department of Mathematics, Faculty of Science, University of Hradec Králové, 500 03 Hradec Králové, Czech Republic

Mathematics, 2020, vol. 8, issue 6, 1-8

Abstract: The order of appearance z : Z > 0 → Z > 0 is an arithmetic function related to the Fibonacci sequence ( F n ) n . This function is defined as the smallest positive integer solution of the congruence F k ≡ 0 ( mod n ) . In this paper, we shall provide lower and upper bounds for the functions ∑ n ≤ x z ( n ) / n , ∑ p ≤ x z ( p ) and ∑ p r ≤ x z ( p r ) .

Keywords: asymptotic; arithmetic functions; inequalities; Fibonacci sequence; order of appearance; Landau symbols (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/8/6/876/pdf (application/pdf)
https://www.mdpi.com/2227-7390/8/6/876/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:8:y:2020:i:6:p:876-:d:365669

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:8:y:2020:i:6:p:876-:d:365669