EconPapers    
Economics at your fingertips  
 

Metric f -Contact Manifolds Satisfying the ( ?, ? )-Nullity Condition

Alfonso Carriazo, Luis M. Fernández and Eugenia Loiudice
Additional contact information
Alfonso Carriazo: Departamento de Geometría y Topología, c/Tarfia s/n, Universidad de Sevilla, 41012 Sevilla, Spain
Luis M. Fernández: Departamento de Geometría y Topología, c/Tarfia s/n, Universidad de Sevilla, 41012 Sevilla, Spain
Eugenia Loiudice: Fachbereich Mathematik und Informatik, Philipps Universität Marburg, Hans-Meerwein-Straße, 35032 Marburg, Germany

Mathematics, 2020, vol. 8, issue 6, 1-11

Abstract: We prove that if the f -sectional curvature at any point of a ( 2 n + s ) -dimensional metric f -contact manifold satisfying the ( κ , μ ) nullity condition with n > 1 is independent of the f -section at the point, then it is constant on the manifold. Moreover, we also prove that a non-normal metric f -contact manifold satisfying the ( κ , μ ) nullity condition is of constant f -sectional curvature if and only if μ = κ + 1 and we give an explicit expression for the curvature tensor field in such a case. Finally, we present some examples.

Keywords: metric f -contact manifold; f -( ? , ? ) manifold; f -( ? , ? )-space form (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/8/6/891/pdf (application/pdf)
https://www.mdpi.com/2227-7390/8/6/891/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:8:y:2020:i:6:p:891-:d:366164

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:8:y:2020:i:6:p:891-:d:366164