Metric f -Contact Manifolds Satisfying the ( ?, ? )-Nullity Condition
Alfonso Carriazo,
Luis M. Fernández and
Eugenia Loiudice
Additional contact information
Alfonso Carriazo: Departamento de Geometría y Topología, c/Tarfia s/n, Universidad de Sevilla, 41012 Sevilla, Spain
Luis M. Fernández: Departamento de Geometría y Topología, c/Tarfia s/n, Universidad de Sevilla, 41012 Sevilla, Spain
Eugenia Loiudice: Fachbereich Mathematik und Informatik, Philipps Universität Marburg, Hans-Meerwein-Straße, 35032 Marburg, Germany
Mathematics, 2020, vol. 8, issue 6, 1-11
Abstract:
We prove that if the f -sectional curvature at any point of a ( 2 n + s ) -dimensional metric f -contact manifold satisfying the ( κ , μ ) nullity condition with n > 1 is independent of the f -section at the point, then it is constant on the manifold. Moreover, we also prove that a non-normal metric f -contact manifold satisfying the ( κ , μ ) nullity condition is of constant f -sectional curvature if and only if μ = κ + 1 and we give an explicit expression for the curvature tensor field in such a case. Finally, we present some examples.
Keywords: metric f -contact manifold; f -( ? , ? ) manifold; f -( ? , ? )-space form (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2227-7390/8/6/891/pdf (application/pdf)
https://www.mdpi.com/2227-7390/8/6/891/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:8:y:2020:i:6:p:891-:d:366164
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().