EconPapers    
Economics at your fingertips  
 

Periodic Intermediate ? -Expansions of Pisot Numbers

Blaine Quackenbush, Tony Samuel and Matt West
Additional contact information
Blaine Quackenbush: Mathematics Department, California Polytechnic State University, San Luis Obispo, CA 93407, USA
Tony Samuel: School of Mathematics, University of Birmingham, Birmingham B15 2TT, UK
Matt West: Department of Mathematics, University of California, Irvine, CA 92697, USA

Mathematics, 2020, vol. 8, issue 6, 1-16

Abstract: The subshift of finite type property (also known as the Markov property) is ubiquitous in dynamical systems and the simplest and most widely studied class of dynamical systems are β -shifts, namely transformations of the form T β , α : x ? β x + α mod 1 acting on [ − α / ( β − 1 ) , ( 1 − α ) / ( β − 1 ) ] , where ( β , α ) ∈ Δ is fixed and where Δ ? { ( β , α ) ∈ R 2 : β ∈ ( 1 , 2 ) and 0 ≤ α ≤ 2 − β } . Recently, it was shown, by Li et al. (Proc. Amer. Math. Soc. 147(5): 2045–2055, 2019), that the set of ( β , α ) such that T β , α has the subshift of finite type property is dense in the parameter space Δ . Here, they proposed the following question. Given a fixed β ∈ ( 1 , 2 ) which is the n -th root of a Perron number, does there exists a dense set of α in the fiber { β } × ( 0 , 2 − β ) , so that T β , α has the subshift of finite type property? We answer this question in the positive for a class of Pisot numbers. Further, we investigate if this question holds true when replacing the subshift of finite type property by the sofic property (that is a factor of a subshift of finite type). In doing so we generalise, a classical result of Schmidt (Bull. London Math. Soc., 12(4): 269–278, 1980) from the case when α = 0 to the case when α ∈ ( 0 , 2 − β ) . That is, we examine the structure of the set of eventually periodic points of T β , α when β is a Pisot number and when β is the n -th root of a Pisot number.

Keywords: ? -expansions; shifts of finite type; periodic points; iterated function systems (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/8/6/903/pdf (application/pdf)
https://www.mdpi.com/2227-7390/8/6/903/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:8:y:2020:i:6:p:903-:d:366653

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:8:y:2020:i:6:p:903-:d:366653