EconPapers    
Economics at your fingertips  
 

Digital Topological Properties of an Alignment of Fixed Point Sets

Sang-Eon Han
Additional contact information
Sang-Eon Han: Department of Mathematics Education, Institute of Pure and Applied Mathematics, Jeonbuk National University, Jeonju-City Jeonbuk 54896, Korea

Mathematics, 2020, vol. 8, issue 6, 1-18

Abstract: The present paper investigates digital topological properties of an alignment of fixed point sets which can play an important role in fixed point theory from the viewpoints of computational or digital topology. In digital topology-based fixed point theory, for a digital image ( X , k ) , let F ( X ) be the set of cardinalities of the fixed point sets of all k -continuous self-maps of ( X , k ) (see Definition 4). In this paper we call it an alignment of fixed point sets of ( X , k ) . Then we have the following unsolved problem. How many components are there in F ( X ) up to 2-connectedness? In particular, let C k n , l be a simple closed k -curve with l elements in Z n and X : = C k n , l 1 ∨ C k n , l 2 be a digital wedge of C k n , l 1 and C k n , l 2 in Z n . Then we need to explore both the number of components of F ( X ) up to digital 2-connectivity (see Definition 4) and perfectness of F ( X ) (see Definition 5). The present paper addresses these issues and, furthermore, solves several problems related to the main issues. Indeed, it turns out that the three models C 2 n n , 4 , C 3 n − 1 n , 4 , and C k n , 6 play important roles in studying these topics because the digital fundamental groups of them have strong relationships with alignments of fixed point sets of them. Moreover, we correct some errors stated by Boxer et al. in their recent work and improve them (see Remark 3). This approach can facilitate the studies of pure and applied topologies, digital geometry, mathematical morphology, and image processing and image classification in computer science. The present paper only deals with k -connected spaces in DTC . Moreover, we will mainly deal with a set X such that X ? ≥ 2 .

Keywords: digital image; digital wedge; normal adjacency; k-homotopy; k-contractibility; alignment; fixed point set; digital topology; fixed point property (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/8/6/921/pdf (application/pdf)
https://www.mdpi.com/2227-7390/8/6/921/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:8:y:2020:i:6:p:921-:d:367961

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:8:y:2020:i:6:p:921-:d:367961