The Triads Geometric Consistency Index in AHP-Pairwise Comparison Matrices
Juan Aguarón,
María Teresa Escobar,
José María Moreno-Jiménez and
Alberto Turón
Additional contact information
Juan Aguarón: Grupo Decisión Multicriterio Zaragoza (GDMZ), Facultad de Economía y Empresa, Universidad de Zaragoza, Gran Vía 2, 50005 Zaragoza, Spain
María Teresa Escobar: Grupo Decisión Multicriterio Zaragoza (GDMZ), Facultad de Economía y Empresa, Universidad de Zaragoza, Gran Vía 2, 50005 Zaragoza, Spain
José María Moreno-Jiménez: Grupo Decisión Multicriterio Zaragoza (GDMZ), Facultad de Economía y Empresa, Universidad de Zaragoza, Gran Vía 2, 50005 Zaragoza, Spain
Alberto Turón: Grupo Decisión Multicriterio Zaragoza (GDMZ), Facultad de Economía y Empresa, Universidad de Zaragoza, Gran Vía 2, 50005 Zaragoza, Spain
Mathematics, 2020, vol. 8, issue 6, 1-17
Abstract:
The paper presents the Triads Geometric Consistency Index ( T - G C I ), a measure for evaluating the inconsistency of the pairwise comparison matrices employed in the Analytic Hierarchy Process (AHP). Based on the Saaty’s definition of consistency for AHP, the new measure works directly with triads of the initial judgements, without having to previously calculate the priority vector, and therefore is valid for any prioritisation procedure used in AHP. The T - G C I is an intuitive indicator defined as the average of the log quadratic deviations from the unit of the intensities of all the cycles of length three. Its value coincides with that of the Geometric Consistency Index ( G C I ) and this allows the utilisation of the inconsistency thresholds as well as the properties of the G C I when using the T - G C I . In addition, the decision tools developed for the G C I can be used when working with triads ( T - G C I ), especially the procedure for improving the inconsistency and the consistency stability intervals of the judgements used in group decision making. The paper further includes a study of the computational complexity of both measures ( T - G C I and G C I ) which allows selecting the most appropriate expression, depending on the size of the matrix. Finally, it is proved that the generalisation of the proposed measure to cycles of any length coincides with the T - G C I . It is not therefore necessary to consider cycles of length greater than three, as they are more complex to obtain and the calculation of their associated measure is more difficult.
Keywords: Analytic Hierarchy Process (AHP); consistency; Geometric Consistency Index (GCI); triads; cycles (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.mdpi.com/2227-7390/8/6/926/pdf (application/pdf)
https://www.mdpi.com/2227-7390/8/6/926/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:8:y:2020:i:6:p:926-:d:368117
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().