Study of Local Convergence and Dynamics of a King-Like Two-Step Method with Applications
Ioannis K. Argyros,
Ángel Alberto Magreñán,
Alejandro Moysi,
Íñigo Sarría and
Juan Antonio Sicilia Montalvo
Additional contact information
Ioannis K. Argyros: Department of Mathematical Sciences, Cameron University, Lawton, OK 73505, USA
Ángel Alberto Magreñán: Departamento de Matemáticas y Computación, Universidad de La Rioja, Madre de Dios 53, 26006 Logroño (La Rioja), Spain
Alejandro Moysi: Departamento de Matemáticas y Computación, Universidad de La Rioja, Madre de Dios 53, 26006 Logroño (La Rioja), Spain
Íñigo Sarría: Escuela Superior de Ingeniería y Tecnología, Universidad Internacional de La Rioja, Avenida de la Paz 123, 26006 Logroño (La Rioja), Spain
Juan Antonio Sicilia Montalvo: Escuela Superior de Ingeniería y Tecnología, Universidad Internacional de La Rioja, Avenida de la Paz 123, 26006 Logroño (La Rioja), Spain
Mathematics, 2020, vol. 8, issue 7, 1-12
Abstract:
In this paper, we present the local results of the convergence of the two-step King-like method to approximate the solution of nonlinear equations. In this study, we only apply conditions to the first derivative, because we only need this condition to guarantee convergence. As a result, the applicability of the method is expanded. We also use different convergence planes to show family behavior. Finally, the new results are used to solve some applications related to chemistry.
Keywords: king-like iterative methods; local convergence; lipschitz conditions; dynamics (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2227-7390/8/7/1062/pdf (application/pdf)
https://www.mdpi.com/2227-7390/8/7/1062/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:8:y:2020:i:7:p:1062-:d:379062
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().