EconPapers    
Economics at your fingertips  
 

Purely Iterative Algorithms for Newton’s Maps and General Convergence

Sergio Amat, Rodrigo Castro, Gerardo Honorato and Á. A. Magreñán
Additional contact information
Sergio Amat: Departamento de Matemática Aplicada y Estadística, Universidad Politécnica de Cartagena, 30202 Cartagena, Spain
Rodrigo Castro: Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2340000, Chile
Gerardo Honorato: CIMFAV and Institute of Mathematical Engineering, Universidad de Valparaíso, General Cruz 222, Valparaíso 2340000, Chile
Á. A. Magreñán: Departamento de Matemáticas y Computación, Universidad de La Rioja, 26006 Logroño, Spain

Mathematics, 2020, vol. 8, issue 7, 1-27

Abstract: The aim of this paper is to study the local dynamical behaviour of a broad class of purely iterative algorithms for Newton’s maps. In particular, we describe the nature and stability of fixed points and provide a type of scaling theorem. Based on those results, we apply a rigidity theorem in order to study the parameter space of cubic polynomials, for a large class of new root finding algorithms. Finally, we study the relations between critical points and the parameter space.

Keywords: general convergence; cubic polynomials; purely iterative methods; Lipschitz conditions; dynamics (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/2227-7390/8/7/1158/pdf (application/pdf)
https://www.mdpi.com/2227-7390/8/7/1158/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:8:y:2020:i:7:p:1158-:d:384712

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:8:y:2020:i:7:p:1158-:d:384712