Purely Iterative Algorithms for Newton’s Maps and General Convergence
Sergio Amat,
Rodrigo Castro,
Gerardo Honorato and
Á. A. Magreñán
Additional contact information
Sergio Amat: Departamento de Matemática Aplicada y Estadística, Universidad Politécnica de Cartagena, 30202 Cartagena, Spain
Rodrigo Castro: Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2340000, Chile
Gerardo Honorato: CIMFAV and Institute of Mathematical Engineering, Universidad de Valparaíso, General Cruz 222, Valparaíso 2340000, Chile
Á. A. Magreñán: Departamento de Matemáticas y Computación, Universidad de La Rioja, 26006 Logroño, Spain
Mathematics, 2020, vol. 8, issue 7, 1-27
Abstract:
The aim of this paper is to study the local dynamical behaviour of a broad class of purely iterative algorithms for Newton’s maps. In particular, we describe the nature and stability of fixed points and provide a type of scaling theorem. Based on those results, we apply a rigidity theorem in order to study the parameter space of cubic polynomials, for a large class of new root finding algorithms. Finally, we study the relations between critical points and the parameter space.
Keywords: general convergence; cubic polynomials; purely iterative methods; Lipschitz conditions; dynamics (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/2227-7390/8/7/1158/pdf (application/pdf)
https://www.mdpi.com/2227-7390/8/7/1158/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:8:y:2020:i:7:p:1158-:d:384712
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().