EconPapers    
Economics at your fingertips  
 

Static and Dynamic Properties of a Few Spin 1/2 Interacting Fermions Trapped in a Harmonic Potential

Abel Rojo-Francàs, Artur Polls and Bruno Juliá-Díaz
Additional contact information
Abel Rojo-Francàs: Departament de Física Quàntica i Astrofísica, Facultat de Física, and Institut de Ciències del Cosmos (ICCUB), Universitat de Barcelona, E–08028 Barcelona, Spain
Artur Polls: Departament de Física Quàntica i Astrofísica, Facultat de Física, and Institut de Ciències del Cosmos (ICCUB), Universitat de Barcelona, E–08028 Barcelona, Spain
Bruno Juliá-Díaz: Departament de Física Quàntica i Astrofísica, Facultat de Física, and Institut de Ciències del Cosmos (ICCUB), Universitat de Barcelona, E–08028 Barcelona, Spain

Mathematics, 2020, vol. 8, issue 7, 1-38

Abstract: We provide a detailed study of the properties of a few interacting spin 1 / 2 fermions trapped in a one-dimensional harmonic oscillator potential. The interaction is assumed to be well represented by a contact delta potential. Numerical results obtained by means of direct diagonalization techniques are combined with analytical expressions for both the non-interacting and strongly interacting regime. The N = 2 case is used to benchmark our numerical techniques with the known exact solution of the problem. After a detailed description of the numerical methods, in a tutorial-like manner, we present the static properties of the system for N = 2 , 3 , 4 and 5 particles, e.g., low-energy spectrum, one-body density matrix, ground-state densities. Then, we consider dynamical properties of the system exploring first the excitation of the breathing mode, using the dynamical structure function and corresponding sum-rules, and then a sudden quench of the interaction strength.

Keywords: few-body systems; one-dimensional trap; trapped atoms; direct diagonalization (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/8/7/1196/pdf (application/pdf)
https://www.mdpi.com/2227-7390/8/7/1196/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:8:y:2020:i:7:p:1196-:d:387510

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:8:y:2020:i:7:p:1196-:d:387510