Common Medical and Statistical Problems: The Dilemma of the Sample Size Calculation for Sensitivity and Specificity Estimation
M. Rosário Oliveira,
Ana Subtil and
Luzia Gonçalves
Additional contact information
M. Rosário Oliveira: Department of Mathematics and CEMAT, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
Ana Subtil: Department of Mathematics and CEMAT, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
Luzia Gonçalves: Unidade de Saúde Pública Internacional e Bioestatística, Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa and Centro de Estatística e Aplicações da Universidade de Lisboa, Rua da Junqueira, 100, 1349-008 Lisbon, Portugal
Mathematics, 2020, vol. 8, issue 8, 1-17
Abstract:
Sample size calculation in biomedical practice is typically based on the problematic Wald method for a binomial proportion, with potentially dangerous consequences. This work highlights the need of incorporating the concept of conditional probability in sample size determination to avoid reduced sample sizes that lead to inadequate confidence intervals. Therefore, new definitions are proposed for coverage probability and expected length of confidence intervals for conditional probabilities, like sensitivity and specificity. The new definitions were used to assess seven confidence interval estimation methods. In order to determine the sample size, two procedures—an optimal one, based on the new definitions, and an approximation—were developed for each estimation method. Our findings confirm the similarity of the approximated sample sizes to the optimal ones. R code is provided to disseminate these methodological advances and translate them into biomedical practice.
Keywords: sample size; sensitivity; specificity; conditional probability; coverage probability (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2227-7390/8/8/1258/pdf (application/pdf)
https://www.mdpi.com/2227-7390/8/8/1258/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:8:y:2020:i:8:p:1258-:d:393091
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().