EconPapers    
Economics at your fingertips  
 

Pseudo-Isotropic Centro-Affine Lorentzian Surfaces

Olivier Birembaux
Additional contact information
Olivier Birembaux: LMI-Laboratoire de Mathématiques pour l’Ingénieur, Université Polytechnique Hauts-de-France, Campus du Mont Houy, CEDEX 9, 59313 Valenciennes, France

Mathematics, 2020, vol. 8, issue 8, 1-12

Abstract: In this paper, we study centro-affine Lorentzian surfaces M 2 in ? 3 which have pseudo-isotropic or lightlike pseudo-isotropic difference tensor. We first show that M 2 is pseudo-isotropic if and only if the Tchebychev form T = 0 . In that case, M 2 is a an equi-affine sphere. Next, we will get a complete classification of centro-affine Lorentzian surfaces which are lightlike pseudo-isotropic but not pseudo-isotropic.

Keywords: centro-affine submanifold; isotropic submanifold; Lorentzian submanifold (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/8/8/1284/pdf (application/pdf)
https://www.mdpi.com/2227-7390/8/8/1284/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:8:y:2020:i:8:p:1284-:d:394143

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:8:y:2020:i:8:p:1284-:d:394143