Ore Extensions for the Sweedler’s Hopf Algebra H 4
Shilin Yang and
Yongfeng Zhang
Additional contact information
Shilin Yang: School of Mathematics, Faculty of Science, Beijing University of Technology, Beijing 100124, China
Yongfeng Zhang: School of Mathematics, Faculty of Science, Beijing University of Technology, Beijing 100124, China
Mathematics, 2020, vol. 8, issue 8, 1-24
Abstract:
The aim of this paper is to classify all Hopf algebra structures on the quotient of Ore extensions H 4 [ z ; σ ] of automorphism type for the Sweedler ′ s 4-dimensional Hopf algebra H 4 . Firstly, we calculate all equivalent classes of twisted homomorphisms ( σ , J ) for H 4 . Then we give the classification of all bialgebra (Hopf algebra) structures on the quotients of H 4 [ z ; σ ] up to isomorphism.
Keywords: Ore extension; Drinfeld twist; twisted homomorphism; Hopf algebra (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2227-7390/8/8/1293/pdf (application/pdf)
https://www.mdpi.com/2227-7390/8/8/1293/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:8:y:2020:i:8:p:1293-:d:394732
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().