EconPapers    
Economics at your fingertips  
 

On Second Order q -Difference Equations Satisfied by Al-Salam–Carlitz I-Sobolev Type Polynomials of Higher Order

Carlos Hermoso, Edmundo J. Huertas, Alberto Lastra and Anier Soria-Lorente
Additional contact information
Carlos Hermoso: Departamento de Física y Matemáticas, Universidad de Alcalá, Ctra. Madrid-Barcelona, Km. 33,600, Facultad de Ciencias, 28805 Alcalá de Henares, Madrid, Spain
Edmundo J. Huertas: Departamento de Física y Matemáticas, Universidad de Alcalá, Ctra. Madrid-Barcelona, Km. 33,600, Facultad de Ciencias, 28805 Alcalá de Henares, Madrid, Spain
Alberto Lastra: Departamento de Física y Matemáticas, Universidad de Alcalá, Ctra. Madrid-Barcelona, Km. 33,600, Facultad de Ciencias, 28805 Alcalá de Henares, Madrid, Spain
Anier Soria-Lorente: Departamento de Tecnología, Universidad de Granma, Km. 17,5 de la Carretera de Bayamo-Manzanillo, Bayamo 85100, Cuba

Mathematics, 2020, vol. 8, issue 8, 1-21

Abstract: This contribution deals with the sequence { U n ( a ) ( x ; q , j ) } n ≥ 0 of monic polynomials in x , orthogonal with respect to a Sobolev-type inner product related to the Al-Salam–Carlitz I orthogonal polynomials, and involving an arbitrary number j of q -derivatives on the two boundaries of the corresponding orthogonality interval, for some fixed real number q ∈ ( 0 , 1 ) . We provide several versions of the corresponding connection formulas, ladder operators, and several versions of the second order q -difference equations satisfied by polynomials in this sequence. As a novel contribution to the literature, we provide certain three term recurrence formula with rational coefficients satisfied by U n ( a ) ( x ; q , j ) , which paves the way to establish an appealing generalization of the so-called J -fractions to the framework of Sobolev-type orthogonality.

Keywords: Al-Salam–Carlitz I polynomials; Al-Salam–Carlitz I-Sobolev type polynomials; second order linear q -difference equations; structure relations; recurrence relations; basic hypergeometric series (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/8/8/1300/pdf (application/pdf)
https://www.mdpi.com/2227-7390/8/8/1300/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:8:y:2020:i:8:p:1300-:d:395302

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:8:y:2020:i:8:p:1300-:d:395302