Rational Design of a Genetic Finite State Machine: Combining Biology, Engineering, and Mathematics for Bio-Computer Research
David Fuente,
Óscar Garibo i Orts,
J. Alberto Conejero and
Javier F. Urchueguía
Additional contact information
David Fuente: Instituto de Aplicaciones de las Tecnologías de la Información y de las Comunicaciones Avanzadas, Universitat Politècnica de València, 46022 València, Spain
Óscar Garibo i Orts: ETS Ingeniería Informática, Universitat Politècnica de València, 46022 València, Spain
J. Alberto Conejero: Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València, 46022 València, Spain
Javier F. Urchueguía: Instituto de Aplicaciones de las Tecnologías de la Información y de las Comunicaciones Avanzadas, Universitat Politècnica de València, 46022 València, Spain
Mathematics, 2020, vol. 8, issue 8, 1-20
Abstract:
The recent success of biological engineering is due to a tremendous amount of research effort and the increasing number of market opportunities. Indeed, this has been partially possible due to the contribution of advanced mathematical tools and the application of engineering principles in genetic-circuit development. In this work, we use a rationally designed genetic circuit to show how models can support research and motivate students to apply mathematics in their future careers. A genetic four-state machine is analyzed using three frameworks: deterministic and stochastic modeling through differential and master equations, and a spatial approach via a cellular automaton. Each theoretical framework sheds light on the problem in a complementary way. It helps in understanding basic concepts of modeling and engineering, such as noise, robustness, and reaction–diffusion systems. The designed automaton could be part of a more complex system of modules conforming future bio-computers and it is a paradigmatic example of how models can assist teachers in multidisciplinary education.
Keywords: mathematics; synthetic biology; education; finite state machine; noise; cellular automaton; reaction–diffusion system (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2227-7390/8/8/1362/pdf (application/pdf)
https://www.mdpi.com/2227-7390/8/8/1362/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:8:y:2020:i:8:p:1362-:d:398999
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().