Mean Square Convergent Non-Standard Numerical Schemes for Linear Random Differential Equations with Delay
Julia Calatayud,
Juan Carlos Cortés,
Marc Jornet and
Francisco Rodríguez
Additional contact information
Julia Calatayud: Instituto Universitario de Matemática Multidisciplinar, Building 8G, Access C, 2nd Floor, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
Juan Carlos Cortés: Instituto Universitario de Matemática Multidisciplinar, Building 8G, Access C, 2nd Floor, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
Marc Jornet: Instituto Universitario de Matemática Multidisciplinar, Building 8G, Access C, 2nd Floor, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
Francisco Rodríguez: Department of Applied Mathematics, University of Alicante, Apdo. 99, 03080 Alicante, Spain
Mathematics, 2020, vol. 8, issue 9, 1-17
Abstract:
In this paper, we are concerned with the construction of numerical schemes for linear random differential equations with discrete delay. For the linear deterministic differential equation with discrete delay, a recent contribution proposed a family of non-standard finite difference (NSFD) methods from an exact numerical scheme on the whole domain. The family of NSFD schemes had increasing order of accuracy, was dynamically consistent, and possessed simple computational properties compared to the exact scheme. In the random setting, when the two equation coefficients are bounded random variables and the initial condition is a regular stochastic process, we prove that the randomized NSFD schemes converge in the mean square (m.s.) sense. M.s. convergence allows for approximating the expectation and the variance of the solution stochastic process. In practice, the NSFD scheme is applied with symbolic inputs, and afterward the statistics are explicitly computed by using the linearity of the expectation. This procedure permits retaining the increasing order of accuracy of the deterministic counterpart. Some numerical examples illustrate the approach. The theoretical m.s. convergence rate is supported numerically, even when the two equation coefficients are unbounded random variables. M.s. dynamic consistency is assessed numerically. A comparison with Euler’s method is performed. Finally, an example dealing with the time evolution of a photosynthetic bacterial population is presented.
Keywords: delay random differential equation; non-standard finite difference method; mean square convergence (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2227-7390/8/9/1417/pdf (application/pdf)
https://www.mdpi.com/2227-7390/8/9/1417/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:8:y:2020:i:9:p:1417-:d:403187
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().