EconPapers    
Economics at your fingertips  
 

The Convergence Analysis of a Numerical Method for a Structured Consumer-Resource Model with Delay in the Resource Evolution Rate

Luis M. Abia, Óscar Angulo, Juan C. López-Marcos and Miguel A. López-Marcos
Additional contact information
Luis M. Abia: Departamento de Matemática Aplicada, Facultad de Ciencias, Universidad de Valladolid e IMUVa, 47011 Valladolid, Spain
Óscar Angulo: Departamento de Matemática Aplicada, ETS de Ingenieros de Telecomunicación, Universidad de Valladolid e IMUVa, 47011 Valladolid, Spain
Juan C. López-Marcos: Departamento de Matemática Aplicada, Facultad de Ciencias, Universidad de Valladolid e IMUVa, 47011 Valladolid, Spain
Miguel A. López-Marcos: Departamento de Matemática Aplicada, Facultad de Ciencias, Universidad de Valladolid e IMUVa, 47011 Valladolid, Spain

Mathematics, 2020, vol. 8, issue 9, 1-18

Abstract: In this paper, we go through the development of a new numerical method to obtain the solution to a size-structured population model that describes the evolution of a consumer feeding on a dynamical resource that reacts to the environment with a lag-time response. The problem involves the coupling of the partial differential equation that represents the population evolution and an ordinary differential equation with a constant delay that describes the evolution of the resource. The numerical treatment of this problem has not been considered before when a delay is included in the resource evolution rate. We analyzed the numerical scheme and proved a second-order rate of convergence by assuming enough regularity of the solution. We numerically confirmed the theoretical results with an academic test problem.

Keywords: size-structured population; consumer-resource model; delay differential equation; numerical methods; characteristics method; convergence analysis (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/8/9/1440/pdf (application/pdf)
https://www.mdpi.com/2227-7390/8/9/1440/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:8:y:2020:i:9:p:1440-:d:404962

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:8:y:2020:i:9:p:1440-:d:404962