Semantic Segmentation for Aerial Mapping
Gabriel Martinez-Soltero,
Alma Y. Alanis,
Nancy Arana-Daniel and
Carlos Lopez-Franco
Additional contact information
Gabriel Martinez-Soltero: Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Blvd. Marcelino García Barragán 1421, Guadalajara C.P. 44430, Jalisco, Mexico
Alma Y. Alanis: Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Blvd. Marcelino García Barragán 1421, Guadalajara C.P. 44430, Jalisco, Mexico
Nancy Arana-Daniel: Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Blvd. Marcelino García Barragán 1421, Guadalajara C.P. 44430, Jalisco, Mexico
Carlos Lopez-Franco: Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Blvd. Marcelino García Barragán 1421, Guadalajara C.P. 44430, Jalisco, Mexico
Mathematics, 2020, vol. 8, issue 9, 1-16
Abstract:
Mobile robots commonly have to traverse rough terrains. One way to find the easiest traversable path is by determining the types of terrains in the environment. The result of this process can be used by the path planning algorithms to find the best traversable path. In this work, we present an approach for terrain classification from aerial images while using a Convolutional Neural Networks at the pixel level. The segmented images can be used in robot mapping and navigation tasks. The performance of two different Convolutional Neural Networks is analyzed in order to choose the best architecture.
Keywords: mapping; semantic segmentation; convolutional neural networks; unet (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2227-7390/8/9/1456/pdf (application/pdf)
https://www.mdpi.com/2227-7390/8/9/1456/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:8:y:2020:i:9:p:1456-:d:406298
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().