EconPapers    
Economics at your fingertips  
 

Which Alternative for Solving Dual Fuzzy Nonlinear Equations Is More Precise?

Joanna Kołodziejczyk, Andrzej Piegat and Wojciech Sałabun
Additional contact information
Joanna Kołodziejczyk: Research Team on Intelligent Decision Support Systems, Department of Artificial Intelligence Methods and Applied Mathematics, Faculty of Computer Science and Information Technology, West Pomeranian University of Technology in Szczecin ul. Żołnierska 49, 71-210 Szczecin, Poland
Andrzej Piegat: Research Team on Intelligent Decision Support Systems, Department of Artificial Intelligence Methods and Applied Mathematics, Faculty of Computer Science and Information Technology, West Pomeranian University of Technology in Szczecin ul. Żołnierska 49, 71-210 Szczecin, Poland
Wojciech Sałabun: Research Team on Intelligent Decision Support Systems, Department of Artificial Intelligence Methods and Applied Mathematics, Faculty of Computer Science and Information Technology, West Pomeranian University of Technology in Szczecin ul. Żołnierska 49, 71-210 Szczecin, Poland

Mathematics, 2020, vol. 8, issue 9, 1-13

Abstract: To answer the question stated in the title, we present and compare two approaches: first, a standard approach for solving dual fuzzy nonlinear systems (DFN-systems) based on Newton’s method, which uses 2D FN representation and second, the new approach, based on multidimensional fuzzy arithmetic (MF-arithmetic). We use a numerical example to explain how the proposed MF-arithmetic solves the DFN-system. To analyze results from the standard and the new approaches, we introduce an imprecision measure. We discuss the reasons why imprecision varies between both methods. The imprecision of the standard approach results (roots) is significant, which means that many possible values are excluded.

Keywords: fuzzy nonlinear systems; fuzzy arithmetic; fuzzy calculus; multidimensional fuzzy arithmetic; RDM fuzzy arithmetic; fuzzy parametric form (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/8/9/1507/pdf (application/pdf)
https://www.mdpi.com/2227-7390/8/9/1507/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:8:y:2020:i:9:p:1507-:d:408929

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:8:y:2020:i:9:p:1507-:d:408929