EconPapers    
Economics at your fingertips  
 

A Reliability Model Based on the Incomplete Generalized Integro-Exponential Function

Juan M. Astorga, Jimmy Reyes, Karol I. Santoro, Osvaldo Venegas and Héctor W. Gómez
Additional contact information
Juan M. Astorga: Departamento de Tecnologías de la Energía, Facultad Tecnológica, Universidad de Atacama, Copiapó 1530000, Chile
Jimmy Reyes: Departamento de Matemáticas, Facultad de Ciencias Básicas, Universidad de Antofagasta, Antofagasta 1240000, Chile
Karol I. Santoro: Departamento de Matemáticas, Facultad de Ciencias, Universidad Católica del Norte, Antofagasta 1240000, Chile
Osvaldo Venegas: Departamento de Ciencias Matemáticas y Físicas, Facultad de Ingeniería, Universidad Católica de Temuco, Temuco 4780000, Chile
Héctor W. Gómez: Departamento de Matemáticas, Facultad de Ciencias Básicas, Universidad de Antofagasta, Antofagasta 1240000, Chile

Mathematics, 2020, vol. 8, issue 9, 1-12

Abstract: This article introduces an extension of the Power Muth (PM) distribution for modeling positive data sets with a high coefficient of kurtosis. The resulting distribution has greater kurtosis than the PM distribution. We show that the density can be represented based on the incomplete generalized integro-exponential function. We study some of its properties and moments, and its coefficients of asymmetry and kurtosis. We apply estimations using the moments and maximum likelihood methods and present a simulation study to illustrate parameter recovery. The results of application to two real data sets indicate that the new model performs very well in the presence of outliers.

Keywords: generalized integro-exponential function; kurtosis; maximum likelihood; power muth distribution; slash distribution (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/2227-7390/8/9/1537/pdf (application/pdf)
https://www.mdpi.com/2227-7390/8/9/1537/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:8:y:2020:i:9:p:1537-:d:410689

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:8:y:2020:i:9:p:1537-:d:410689