A Reliability Model Based on the Incomplete Generalized Integro-Exponential Function
Juan M. Astorga,
Jimmy Reyes,
Karol I. Santoro,
Osvaldo Venegas and
Héctor W. Gómez
Additional contact information
Juan M. Astorga: Departamento de Tecnologías de la Energía, Facultad Tecnológica, Universidad de Atacama, Copiapó 1530000, Chile
Jimmy Reyes: Departamento de Matemáticas, Facultad de Ciencias Básicas, Universidad de Antofagasta, Antofagasta 1240000, Chile
Karol I. Santoro: Departamento de Matemáticas, Facultad de Ciencias, Universidad Católica del Norte, Antofagasta 1240000, Chile
Osvaldo Venegas: Departamento de Ciencias Matemáticas y Físicas, Facultad de Ingeniería, Universidad Católica de Temuco, Temuco 4780000, Chile
Héctor W. Gómez: Departamento de Matemáticas, Facultad de Ciencias Básicas, Universidad de Antofagasta, Antofagasta 1240000, Chile
Mathematics, 2020, vol. 8, issue 9, 1-12
Abstract:
This article introduces an extension of the Power Muth (PM) distribution for modeling positive data sets with a high coefficient of kurtosis. The resulting distribution has greater kurtosis than the PM distribution. We show that the density can be represented based on the incomplete generalized integro-exponential function. We study some of its properties and moments, and its coefficients of asymmetry and kurtosis. We apply estimations using the moments and maximum likelihood methods and present a simulation study to illustrate parameter recovery. The results of application to two real data sets indicate that the new model performs very well in the presence of outliers.
Keywords: generalized integro-exponential function; kurtosis; maximum likelihood; power muth distribution; slash distribution (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/2227-7390/8/9/1537/pdf (application/pdf)
https://www.mdpi.com/2227-7390/8/9/1537/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:8:y:2020:i:9:p:1537-:d:410689
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().