EconPapers    
Economics at your fingertips  
 

On the Real Homotopy Type of Generalized Complex Nilmanifolds

Adela Latorre, Luis Ugarte and Raquel Villacampa
Additional contact information
Adela Latorre: Departamento de Matemática Aplicada, Universidad Politécnica de Madrid, C/ José Antonio Novais 10, 28040 Madrid, Spain
Luis Ugarte: Departamento de Matemáticas - I.U.M.A., Universidad de Zaragoza, Campus Plaza San Francisco, 50009 Zaragoza, Spain
Raquel Villacampa: Centro Universitario de la Defensa - I.U.M.A., Academia General Militar, Crta. de Huesca s/n, 50090 Zaragoza, Spain

Mathematics, 2020, vol. 8, issue 9, 1-12

Abstract: We prove that for any n ≥ 4 , there are infinitely many real homotopy types of 2 n -dimensional nilmanifolds admitting generalized complex structures of every type k , for 0 ≤ k ≤ n .

Keywords: nilmanifold; nilpotent Lie algebra; complex structure; symplectic form; generalized complex structure; homotopy theory; minimal model (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/8/9/1562/pdf (application/pdf)
https://www.mdpi.com/2227-7390/8/9/1562/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:8:y:2020:i:9:p:1562-:d:412079

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:8:y:2020:i:9:p:1562-:d:412079