EconPapers    
Economics at your fingertips  
 

A Duality Relationship Between Fuzzy Partial Metrics and Fuzzy Quasi-Metrics

Valentín Gregori, Juan-José Miñana and David Miravet
Additional contact information
Valentín Gregori: Instituto de Investigación para la Gestión Integrada de Zonas Costeras, Universitat Politècnica de València, C/ Paranimf, 1, 46730 Grao de Gandia, Spain
Juan-José Miñana: Departament de Ciències Matemàtiques i Informàtica, Universitat de les Illes Balears, Carretera de Valldemossa km. 7.5, 07122 Palma, Spain
David Miravet: Instituto de Investigación para la Gestión Integrada de Zonas Costeras, Universitat Politècnica de València, C/ Paranimf, 1, 46730 Grao de Gandia, Spain

Mathematics, 2020, vol. 8, issue 9, 1-16

Abstract: In 1994, Matthews introduced the notion of partial metric and established a duality relationship between partial metrics and quasi-metrics defined on a set X . In this paper, we adapt such a relationship to the fuzzy context, in the sense of George and Veeramani, by establishing a duality relationship between fuzzy quasi-metrics and fuzzy partial metrics on a set X , defined using the residuum operator of a continuous t -norm ∗. Concretely, we provide a method to construct a fuzzy quasi-metric from a fuzzy partial one. Subsequently, we introduce the notion of fuzzy weighted quasi-metric and obtain a way to construct a fuzzy partial metric from a fuzzy weighted quasi-metric. Such constructions are restricted to the case in which the continuous t -norm ∗ is Archimedean and we show that such a restriction cannot be deleted. Moreover, in both cases, the topology is preserved, i.e., the topology of the fuzzy quasi-metric obtained coincides with the topology of the fuzzy partial metric from which it is constructed and vice versa. Besides, different examples to illustrate the exposed theory are provided, which, in addition, show the consistence of our constructions comparing it with the classical duality relationship.

Keywords: fuzzy quasi-metric; fuzzy partial metric; additive generator; residuum operator; Archimedean t -norm (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/2227-7390/8/9/1575/pdf (application/pdf)
https://www.mdpi.com/2227-7390/8/9/1575/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:8:y:2020:i:9:p:1575-:d:412660

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:8:y:2020:i:9:p:1575-:d:412660