EconPapers    
Economics at your fingertips  
 

Attention-Enhanced Graph Neural Networks for Session-Based Recommendation

Baocheng Wang and Wentao Cai
Additional contact information
Baocheng Wang: College of Information, North China University of Technology, Beijing 100144, China
Wentao Cai: College of Information, North China University of Technology, Beijing 100144, China

Mathematics, 2020, vol. 8, issue 9, 1-11

Abstract: Session-based recommendation, which aims to match user needs with rich resources based on anonymous sessions, nowadays plays a critical role in various online platforms (e.g., media streaming sites, search and e-commerce). Existing recommendation algorithms usually model a session as a sequence or a session graph to model transitions between items. Despite their effectiveness, we would argue that the performance of these methods is still flawed: (1) Using only fixed session item embedding without considering the diversity of users’ interests and target items. (2) For user’s long-term interest, the difficulty of capturing the different priorities for different items accurately. To tackle these defects, we propose a novel model which leverages both the target attentive network and self-attention network to improve the graph-neural-network (GNN)-based recommender. In our model, we first model user’s interaction sequences as session graphs which serves as the input of the GNN, and each node vector involved in session graph can be obtained via the GNN. Next, target attentive network can activates different user interests corresponding to varied target items (i.e., the session embedding learned varies with different target items), which can reveal the relevance between users’ interests and target items. At last, after applying the self-attention mechanism, the different priorities for different items can be captured to improve the precision of the long-term session representation. By using a hybrid of long-term and short-term session representation, we can capture users’ comprehensive interests at multiple levels. Extensive experiments demonstrate the effectiveness of our algorithm on two real-world datasets for session-based recommendation.

Keywords: session-based recommendation; graph neural network; attention network (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/8/9/1607/pdf (application/pdf)
https://www.mdpi.com/2227-7390/8/9/1607/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:8:y:2020:i:9:p:1607-:d:415357

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:8:y:2020:i:9:p:1607-:d:415357