Towards a Vector Field Based Approach to the Proper Generalized Decomposition (PGD)
Antonio Falcó,
Lucía Hilario,
Nicolás Montés,
Marta C. Mora and
Enrique Nadal
Additional contact information
Antonio Falcó: ESI International Chair@CEU-UCH, Departamento de Matemáticas, Física y Ciencias Tecnológicas, Universidad Cardenal Herrera-CEU, CEU Universities San Bartolomé 55, 46115 Alfara del Patriarca, Spain
Lucía Hilario: ESI International Chair@CEU-UCH, Departamento de Matemáticas, Física y Ciencias Tecnológicas, Universidad Cardenal Herrera-CEU, CEU Universities San Bartolomé 55, 46115 Alfara del Patriarca, Spain
Nicolás Montés: ESI International Chair@CEU-UCH, Departamento de Matemáticas, Física y Ciencias Tecnológicas, Universidad Cardenal Herrera-CEU, CEU Universities San Bartolomé 55, 46115 Alfara del Patriarca, Spain
Marta C. Mora: Departamento de Ingeniería Mecánica y Construcción, Universitat Jaume I, Avd. Vicent Sos Baynat s/n, 12071 Castellón, Spain
Enrique Nadal: Departamento de Ingeniería Mecánica y de Materiales, Universitat Politècnica de València Camino de Vera, s/n, 46022 Valencia, Spain
Mathematics, 2020, vol. 9, issue 1, 1-14
Abstract:
A novel algorithm called the Proper Generalized Decomposition (PGD) is widely used by the engineering community to compute the solution of high dimensional problems. However, it is well-known that the bottleneck of its practical implementation focuses on the computation of the so-called best rank-one approximation. Motivated by this fact, we are going to discuss some of the geometrical aspects of the best rank-one approximation procedure. More precisely, our main result is to construct explicitly a vector field over a low-dimensional vector space and to prove that we can identify its stationary points with the critical points of the best rank-one optimization problem. To obtain this result, we endow the set of tensors with fixed rank-one with an explicit geometric structure.
Keywords: proper generalised decomposition; alternating least squares; greedy rank one update algorithm; tensor numerical methods (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2227-7390/9/1/34/pdf (application/pdf)
https://www.mdpi.com/2227-7390/9/1/34/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:9:y:2020:i:1:p:34-:d:468173
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().