Monte Carlo Simulation of a Modified Chi Distribution with Unequal Variances in the Generating Gaussians. A Discrete Methodology to Study Collective Response Times
Juan Carlos Castro-Palacio,
J. M. Isidro,
Esperanza Navarro-Pardo,
Luisberis Velázquez-Abad and
Pedro Fernández- de-Córdoba
Additional contact information
Juan Carlos Castro-Palacio: Grupo de Modelización Interdisciplinar, Instituto Universitario de Matemática Pura y Aplicada, InterTech, Universitat Politècnica de València, E-46022 Valencia, Spain
J. M. Isidro: Grupo de Modelización Interdisciplinar, Instituto Universitario de Matemática Pura y Aplicada, InterTech, Universitat Politècnica de València, E-46022 Valencia, Spain
Esperanza Navarro-Pardo: Grupo de Modelización Interdisciplinar, Departamento de Psicología Evolutiva y de la Educación, InterTech, Universitat de València, E-46010 Valencia, Spain
Luisberis Velázquez-Abad: Departamento de Física, Universidad Católica del Norte, Antofagasta 0610, Chile
Pedro Fernández- de-Córdoba: Grupo de Modelización Interdisciplinar, Instituto Universitario de Matemática Pura y Aplicada, InterTech, Universitat Politècnica de València, E-46022 Valencia, Spain
Mathematics, 2020, vol. 9, issue 1, 1-10
Abstract:
The Chi distribution is a continuous probability distribution of a random variable obtained from the positive square root of the sum of k squared variables, each coming from a standard Normal distribution (mean = 0 and variance = 1). The variable k indicates the degrees of freedom. The usual expression for the Chi distribution can be generalised to include a parameter which is the variance (which can take any value) of the generating Gaussians. For instance, for k = 3, we have the case of the Maxwell-Boltzmann (MB) distribution of the particle velocities in the Ideal Gas model of Physics. In this work, we analyse the case of unequal variances in the generating Gaussians whose distribution we will still represent approximately in terms of a Chi distribution. We perform a Monte Carlo simulation to generate a random variable which is obtained from the positive square root of the sum of k squared variables, but this time coming from non-standard Normal distributions, where the variances can take any positive value. Then, we determine the boundaries of what to expect when we start from a set of unequal variances in the generating Gaussians. In the second part of the article, we present a discrete model to calculate the parameter of the Chi distribution in an approximate way for this case (unequal variances). We also comment on the application of this simple discrete model to calculate the parameter of the MB distribution (Chi of k = 3) when it is used to represent the reaction times to visual stimuli of a collective of individuals in the framework of a Physics inspired model we have published in a previous work.
Keywords: Chi distribution; Maxwell-Boltzmann distribution; reaction times; discrete model (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2227-7390/9/1/77/pdf (application/pdf)
https://www.mdpi.com/2227-7390/9/1/77/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:9:y:2020:i:1:p:77-:d:473014
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().