EconPapers    
Economics at your fingertips  
 

Selecting Correct Methods to Extract Fuzzy Rules from Artificial Neural Network

Xiao Tan, Yuan Zhou, Zuohua Ding and Yang Liu
Additional contact information
Xiao Tan: Lab of Intelligent Computing and Software Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
Yuan Zhou: School of Computer Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
Zuohua Ding: Lab of Intelligent Computing and Software Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
Yang Liu: School of Computer Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore

Mathematics, 2021, vol. 9, issue 11, 1-22

Abstract: Artificial neural network (ANN) inherently cannot explain in a comprehensible form how a given decision or output is generated, which limits its extensive use. Fuzzy rules are an intuitive and reasonable representation to be used for explanation, model checking, and system integration. However, different methods may extract different rules from the same ANN. Which one can deliver good quality such that the ANN can be accurately described by the extracted fuzzy rules? In this paper, we perform an empirical study on three different rule extraction methods. The first method extracts fuzzy rules from a fuzzy neural network, while the second and third ones are originally designed to extract crisp rules, which can be transformed into fuzzy rules directly, from a well-trained ANN. In detail, in the second method, the behavior of a neuron is approximated by (continuous) Boolean functions with respect to its direct input neurons, whereas in the third method, the relationship between a neuron and its direct input neurons is described by a decision tree. We evaluate the three methods on discrete, continuous, and hybrid data sets by comparing the rules generated from sample data directly. The results show that the first method cannot generate proper fuzzy rules on the three kinds of data sets, the second one can generate accurate rules on discrete data, while the third one can generate fuzzy rules for all data sets but cannot always guarantee the accuracy, especially for data sets with poor separability. Hence, our work illustrates that, given an ANN, one should carefully select a method, sometimes even needs to design new methods for explanations.

Keywords: artificial neural network; ANN explanation; fuzzy rules (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/9/11/1164/pdf (application/pdf)
https://www.mdpi.com/2227-7390/9/11/1164/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:9:y:2021:i:11:p:1164-:d:559695

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:9:y:2021:i:11:p:1164-:d:559695