EconPapers    
Economics at your fingertips  
 

Navier–Stokes Cauchy Problem with | v 0 ( x )| 2 Lying in the Kato Class K 3

Francesca Crispo and Paolo Maremonti
Additional contact information
Francesca Crispo: Dipartimento di Matematica e Fisica, Università degli Studi della Campania “L. Vanvitelli”, 81100 Caserta, Italy
Paolo Maremonti: Dipartimento di Matematica e Fisica, Università degli Studi della Campania “L. Vanvitelli”, 81100 Caserta, Italy

Mathematics, 2021, vol. 9, issue 11, 1-14

Abstract: We investigate the 3D Navier–Stokes Cauchy problem. We assume the initial datum v 0 is weakly divergence free, sup R 3 ? R 3 | v 0 ( y ) | 2 | x ? y | d y < ? and | v 0 ( y ) | 2 ? K 3 , where K 3 denotes the Kato class. The existence is local for arbitrary data and global if sup R 3 ? R 3 | v 0 ( y ) | 2 | x ? y | d y is small. Regularity and uniqueness also hold.

Keywords: Navier–Stokes equations; existence; regular solutions (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/9/11/1167/pdf (application/pdf)
https://www.mdpi.com/2227-7390/9/11/1167/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:9:y:2021:i:11:p:1167-:d:559935

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:9:y:2021:i:11:p:1167-:d:559935