EconPapers    
Economics at your fingertips  
 

Using Markov Models to Characterize and Predict Process Target Compliance

Sally McClean
Additional contact information
Sally McClean: School of Computing, Ulster University, Belfast BT37 0QB, Northern Ireland, UK

Mathematics, 2021, vol. 9, issue 11, 1-12

Abstract: Processes are everywhere, covering disparate fields such as business, industry, telecommunications, and healthcare. They have previously been analyzed and modelled with the aim of improving understanding and efficiency as well as predicting future events and outcomes. In recent years, process mining has appeared with the aim of uncovering, observing, and improving processes, often based on data obtained from logs. This typically requires task identification, predicting future pathways, or identifying anomalies. We here concentrate on using Markov processes to assess compliance with completion targets or, inversely, we can determine appropriate targets for satisfactory performance. Previous work is extended to processes where there are a number of possible exit options, with potentially different target completion times. In particular, we look at distributions of the number of patients failing to meet targets, through time. The formulae are illustrated using data from a stroke patient unit, where there are multiple discharge destinations for patients, namely death, private nursing home, or the patient’s own home, where different discharge destinations may require disparate targets. Key performance indicators (KPIs) of this sort are commonplace in healthcare, business, and industrial processes. Markov models, or their extensions, have an important role to play in this work where the approach can be extended to include more expressive assumptions, with the aim of assessing compliance in complex scenarios.

Keywords: process mining; process modelling; phase-type models; process target compliance (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/9/11/1187/pdf (application/pdf)
https://www.mdpi.com/2227-7390/9/11/1187/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:9:y:2021:i:11:p:1187-:d:561263

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:9:y:2021:i:11:p:1187-:d:561263