EconPapers    
Economics at your fingertips  
 

Quantum-Inspired Differential Evolution with Grey Wolf Optimizer for 0-1 Knapsack Problem

Yule Wang and Wanliang Wang
Additional contact information
Yule Wang: College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China
Wanliang Wang: College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China

Mathematics, 2021, vol. 9, issue 11, 1-21

Abstract: The knapsack problem is one of the most widely researched NP-complete combinatorial optimization problems and has numerous practical applications. This paper proposes a quantum-inspired differential evolution algorithm with grey wolf optimizer (QDGWO) to enhance the diversity and convergence performance and improve the performance in high-dimensional cases for 0-1 knapsack problems. The proposed algorithm adopts quantum computing principles such as quantum superposition states and quantum gates. It also uses adaptive mutation operations of differential evolution, crossover operations of differential evolution, and quantum observation to generate new solutions as trial individuals. Selection operations are used to determine the better solutions between the stored individuals and the trial individuals created by mutation and crossover operations. In the event that the trial individuals are worse than the current individuals, the adaptive grey wolf optimizer and quantum rotation gate are used to preserve the diversity of the population as well as speed up the search for the global optimal solution. The experimental results for 0-1 knapsack problems confirm the advantages of QDGWO with the effectiveness and global search capability for knapsack problems, especially for high-dimensional situations.

Keywords: quantum computing; differential evolution; grey wolf optimizer; evolutionary algorithm; 0-1 knapsack problem (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/9/11/1233/pdf (application/pdf)
https://www.mdpi.com/2227-7390/9/11/1233/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:9:y:2021:i:11:p:1233-:d:564032

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:9:y:2021:i:11:p:1233-:d:564032