EconPapers    
Economics at your fingertips  
 

Simpson- and Newton-Type Inequalities for Convex Functions via ( p, q )-Calculus

Waewta Luangboon, Kamsing Nonlaopon, Jessada Tariboon and Sotiris K. Ntouyas
Additional contact information
Waewta Luangboon: Department of Mathematics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
Kamsing Nonlaopon: Department of Mathematics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
Jessada Tariboon: Department of Mathematics, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand
Sotiris K. Ntouyas: Department of Mathematics, University of Ioannina, 451 10 Ioannina, Greece

Mathematics, 2021, vol. 9, issue 12, 1-21

Abstract: In this paper, we establish several new ( p , q ) -integral identities involving ( p , q ) -integrals by using the definition of a ( p , q ) -derivative. These results are then used to derive ( p , q ) -integral Simpson- and Newton-type inequalities involving convex functions. Moreover, some examples are given to illustrate the investigated results.

Keywords: Simpson inequality; Newton inequality; convex function; ( p , q )-derivative; ( p , q )-integral; ( p , q )-calculus (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/2227-7390/9/12/1338/pdf (application/pdf)
https://www.mdpi.com/2227-7390/9/12/1338/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:9:y:2021:i:12:p:1338-:d:572056

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:9:y:2021:i:12:p:1338-:d:572056