EconPapers    
Economics at your fingertips  
 

Generalized Strongly Increasing Semigroups

E. R. García Barroso, J. I. García-García and A. Vigneron-Tenorio
Additional contact information
E. R. García Barroso: Departamento de Matemáticas, Estadística e I.O. Sección de Matemáticas, Universidad de La Laguna, Apartado de Correos 456, 38200 La Laguna, Spain
J. I. García-García: Department of Mathematics/INDESS (Instituto Universitario para el Desarrollo Social Sostenible), University of Cadiz, 11510 Puerto Real, Spain
A. Vigneron-Tenorio: Department of Mathematics/INDESS (Instituto Universitario para el Desarrollo Social Sostenible), University of Cadiz, 11406 Jerez de la Frontera, Spain

Mathematics, 2021, vol. 9, issue 12, 1-15

Abstract: In this work, we present a new class of numerical semigroups called GSI-semigroups. We see the relations between them and other families of semigroups and we explicitly give their set of gaps. Moreover, an algorithm to obtain all the GSI-semigroups up to a given Frobenius number is provided and the realization of positive integers as Frobenius numbers of GSI-semigroups is studied.

Keywords: generalized strongly increasing semigroup; strongly increasing semigroup; Frobenius number; Apéry set; singular analytic plane curve (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/9/12/1370/pdf (application/pdf)
https://www.mdpi.com/2227-7390/9/12/1370/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:9:y:2021:i:12:p:1370-:d:574219

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:9:y:2021:i:12:p:1370-:d:574219