EconPapers    
Economics at your fingertips  
 

Cauchy Problem for a Stochastic Fractional Differential Equation with Caputo-Itô Derivative

Jorge Sanchez-Ortiz, Omar U. Lopez-Cresencio, Francisco J. Ariza-Hernandez and Martin P. Arciga-Alejandre
Additional contact information
Jorge Sanchez-Ortiz: Facultad de Matemáticas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N Cd, Universitaria, Chilpancingo, Guerrero C.P. 39087, Mexico
Omar U. Lopez-Cresencio: Facultad de Matemáticas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N Cd, Universitaria, Chilpancingo, Guerrero C.P. 39087, Mexico
Francisco J. Ariza-Hernandez: Facultad de Matemáticas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N Cd, Universitaria, Chilpancingo, Guerrero C.P. 39087, Mexico
Martin P. Arciga-Alejandre: Facultad de Matemáticas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N Cd, Universitaria, Chilpancingo, Guerrero C.P. 39087, Mexico

Mathematics, 2021, vol. 9, issue 13, 1-10

Abstract: In this note, we define an operator on a space of Itô processes, which we call Caputo-Itô derivative, then we considerer a Cauchy problem for a stochastic fractional differential equation with this derivative. We demonstrate the existence and uniqueness by a contraction mapping argument and some examples are given.

Keywords: brownian motion; Caputo-Itô derivative; Itô process; existence; uniqueness (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/9/13/1479/pdf (application/pdf)
https://www.mdpi.com/2227-7390/9/13/1479/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:9:y:2021:i:13:p:1479-:d:581182

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:9:y:2021:i:13:p:1479-:d:581182