EconPapers    
Economics at your fingertips  
 

A FEM-Green Approach for Magnetic Field Problems with Open Boundaries

Jacques Lobry
Additional contact information
Jacques Lobry: Department of General Physics, Faculty of Engineering, University of Mons, B-7000 Mons, Belgium

Mathematics, 2021, vol. 9, issue 14, 1-11

Abstract: A new finite element method/boundary element method (FEM/BEM) scheme is proposed for the solution of the 2D magnetic static and quasi-static problems with unbounded domains. The novelty is an original approach in the treatment of the outer region. The related domain integral is eliminated at the discrete level by using the finite element approximation of the fundamental solutions (Green’s functions) at every node of the related mesh. This “FEM-Green” approach replaces the standard boundary element method. It is simpler to implement because no integration on the boundary of the domain is required. Then, the method leads to a substantially reduced computational burden. Moreover, the coupling with finite elements is more natural since it is based on the same Galerkin approximation. Some examples with open boundary and nonlinear materials are presented and compared with the standard finite element method.

Keywords: magnetostatics; eddy-currents; Green functions; boundary element-finite element coupling; Poisson problem; nonlinear material (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/2227-7390/9/14/1662/pdf (application/pdf)
https://www.mdpi.com/2227-7390/9/14/1662/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:9:y:2021:i:14:p:1662-:d:594698

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:9:y:2021:i:14:p:1662-:d:594698