Q-Learnheuristics: Towards Data-Driven Balanced Metaheuristics
Broderick Crawford,
Ricardo Soto,
José Lemus-Romani,
Marcelo Becerra-Rozas,
José M. Lanza-Gutiérrez,
Nuria Caballé,
Mauricio Castillo,
Diego Tapia,
Felipe Cisternas-Caneo,
José García,
Gino Astorga,
Carlos Castro and
José-Miguel Rubio
Additional contact information
Broderick Crawford: Escuela de Ingeniería Informática, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2241, Valparaíso 2362807, Chile
Ricardo Soto: Escuela de Ingeniería Informática, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2241, Valparaíso 2362807, Chile
José Lemus-Romani: Escuela de Ingeniería Informática, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2241, Valparaíso 2362807, Chile
Marcelo Becerra-Rozas: Escuela de Ingeniería Informática, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2241, Valparaíso 2362807, Chile
José M. Lanza-Gutiérrez: Departamento de Ciencias de la Computación, Escuela Politécnica Superior, Universidad de Alcalá, 28805 Alcalá de Henares, Spain
Nuria Caballé: Departamento de Física y Matemáticas, Facultad de Ciencias, Universidad de Alcalá, 28802 Alcalá de Henares, Spain
Mauricio Castillo: Escuela de Ingeniería Informática, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2241, Valparaíso 2362807, Chile
Diego Tapia: Escuela de Ingeniería Informática, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2241, Valparaíso 2362807, Chile
Felipe Cisternas-Caneo: Escuela de Ingeniería Informática, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2241, Valparaíso 2362807, Chile
José García: Escuela de Ingeniería en Construcción, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2147, Valparaíso 2362804, Chile
Gino Astorga: Escuela de Negocios Internacionales, Universidad de Valparaíso, Alcalde Prieto Nieto 452, Viña del Mar 2572048, Chile
Carlos Castro: Departamento de Informática, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile
José-Miguel Rubio: Escuela de Computación e Informática, Universidad Bernardo O’Higgins, Av. Viel 1497, Santiago 8370993, Chile
Mathematics, 2021, vol. 9, issue 16, 1-26
Abstract:
One of the central issues that must be resolved for a metaheuristic optimization process to work well is the dilemma of the balance between exploration and exploitation. The metaheuristics (MH) that achieved this balance can be called balanced MH, where a Q-Learning (QL) integration framework was proposed for the selection of metaheuristic operators conducive to this balance, particularly the selection of binarization schemes when a continuous metaheuristic solves binary combinatorial problems. In this work the use of this framework is extended to other recent metaheuristics, demonstrating that the integration of QL in the selection of operators improves the exploration-exploitation balance. Specifically, the Whale Optimization Algorithm and the Sine-Cosine Algorithm are tested by solving the Set Covering Problem, showing statistical improvements in this balance and in the quality of the solutions.
Keywords: metaheuristics; balanced metaheuristics; Q-Learning; Whale Optimization Algorithm; Sine-Cosine Algorithm (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2227-7390/9/16/1839/pdf (application/pdf)
https://www.mdpi.com/2227-7390/9/16/1839/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:9:y:2021:i:16:p:1839-:d:608235
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().