EconPapers    
Economics at your fingertips  
 

A Self-Adaptive Cuckoo Search Algorithm Using a Machine Learning Technique

Nicolás Caselli, Ricardo Soto, Broderick Crawford, Sergio Valdivia and Rodrigo Olivares
Additional contact information
Nicolás Caselli: Escuela de Ingeniería Informática, Pontificia Universidad Católica de Valparaíso, Valparaíso 2362807, Chile
Ricardo Soto: Escuela de Ingeniería Informática, Pontificia Universidad Católica de Valparaíso, Valparaíso 2362807, Chile
Broderick Crawford: Escuela de Ingeniería Informática, Pontificia Universidad Católica de Valparaíso, Valparaíso 2362807, Chile
Sergio Valdivia: Dirección de Tecnologías de Información y Comunicación, Universidad de Valparaíso, Valparaíso 2361864, Chile
Rodrigo Olivares: Escuela de Ingeniería Informática, Universidad de Valparaíso, Valparaíso 2362905, Chile

Mathematics, 2021, vol. 9, issue 16, 1-28

Abstract: Metaheuristics are intelligent problem-solvers that have been very efficient in solving huge optimization problems for more than two decades. However, the main drawback of these solvers is the need for problem-dependent and complex parameter setting in order to reach good results. This paper presents a new cuckoo search algorithm able to self-adapt its configuration, particularly its population and the abandon probability. The self-tuning process is governed by using machine learning, where cluster analysis is employed to autonomously and properly compute the number of agents needed at each step of the solving process. The goal is to efficiently explore the space of possible solutions while alleviating human effort in parameter configuration. We illustrate interesting experimental results on the well-known set covering problem, where the proposed approach is able to compete against various state-of-the-art algorithms, achieving better results in one single run versus 20 different configurations. In addition, the result obtained is compared with similar hybrid bio-inspired algorithms illustrating interesting results for this proposal.

Keywords: clustering techniques; metaheuristics; machine learning; self-adaptive; parameter setting; exploration; exploitation (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/2227-7390/9/16/1840/pdf (application/pdf)
https://www.mdpi.com/2227-7390/9/16/1840/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:9:y:2021:i:16:p:1840-:d:608279

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:9:y:2021:i:16:p:1840-:d:608279