An Extension of the Truncated-Exponential Skew- Normal Distribution
Pilar A. Rivera,
Diego I. Gallardo,
Osvaldo Venegas,
Marcelo Bourguignon and
Héctor W. Gómez
Additional contact information
Pilar A. Rivera: Departamento de Matemáticas, Facultad de Ciencias Básicas, Universidad de Antofagasta, Antofagasta 1240000, Chile
Diego I. Gallardo: Departamento de Matemática, Facultad de Ingeniería, Universidad de Atacama, Copiapó 1530000, Chile
Osvaldo Venegas: Departamento de Ciencias Matemáticas y Físicas, Facultad de Ingeniería, Universidad Católica de Temuco, Temuco 4780000, Chile
Marcelo Bourguignon: Departamento de Estatística, Universidade Federal do Rio Grande do Norte, Natal 59078-970, Brazil
Héctor W. Gómez: Departamento de Matemáticas, Facultad de Ciencias Básicas, Universidad de Antofagasta, Antofagasta 1240000, Chile
Mathematics, 2021, vol. 9, issue 16, 1-11
Abstract:
In the paper, we present an extension of the truncated-exponential skew-normal (TESN) distribution. This distribution is defined as the quotient of two independent random variables whose distributions are the TESN distribution and the beta distribution with shape parameters q and 1, respectively. The resulting distribution has a more flexible coefficient of kurtosis. We studied the general probability density function (pdf) of this distribution, its survival and hazard functions, some of its properties, moments and inference by the maximum likelihood method. We carried out a simulation and applied the methodology to a real dataset.
Keywords: skew-normal distribution; slash distribution; kurtosis (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2227-7390/9/16/1894/pdf (application/pdf)
https://www.mdpi.com/2227-7390/9/16/1894/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:9:y:2021:i:16:p:1894-:d:611281
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().